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Chaotic Josephson oscillations of exciton-polaritons and their applications
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We consider Josephson oscillations between two coupled, quasiresonantly pumped exciton-polariton (polar-
iton) modes. We analyze the regions of stability and periodic oscillations of such a system and show that the
spin degree of freedom allows a chaotic behavior. We show that two spatially separated polariton Josephson
junctions can be synchronized and used for data encryption and transfer. Due to the strong nonlinearity of
polariton-polariton interactions, chaos communication at rates up to 50 Gb/s is possible, which is at least ten

times faster than the results obtained for other systems.
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I. INTRODUCTION

Chaotic behavior of perfectly deterministic systems has
been fascinating scientists since its discovery by Poincaré!
and its popularization by Lorenz? and Mandelbrot.> Chaotic
behavior has been observed in nature as well as in laboratory
in a variety of systems including mechanical, chemical, bio-
logical, electrical, and optical ones. A necessary condition for
a system to be chaotic is nonlinearity. Moreover, the com-
plexity of the system should be sufficient in order to allow
the existence of the chaotic attractor in the phase space. After
the seminal paper of Pecora and Carroll,* the question of
synchronization of chaotic systems has become one of the
central ones in the field of nonlinear dynamics. The possibil-
ity to apply chaos synchronization to communications imme-
diately became apparent. Several experimental implementa-
tions of this concept have been demonstrated,> including
ones based on a semiconductor laser.® Chaos communication
at a distance of 120 km using commercial fiber-optic links
has been demonstrated in 2006.” Although the questions of
security of chaotic communications are not always analyzed
thoroughly for the proposed systems, a certain general analy-
sis for the field has been carried out recently.?

In this paper we present a system capable of demonstrat-
ing chaotic behavior and synchronization. This system is a
Josephson junction between spinor cavity exciton-polariton
macro-occupied modes.” Chaotic Josephson oscillations and
their synchronization have been studied before in arrays of
superconductors with Josephson junctions but with a differ-
ent nonlinear term with respect to the case we consider.!®!!
Cavity exciton-polaritons (polaritons) are the eigenmodes re-
sulting from the strong coupling'? between quantum-well ex-
citons and cavity photons in microcavities. The polaritons
are now a subject of intense fundamental and applied
studies'® because of their peculiar properties. Indeed, the ex-
citonic component of the polaritons makes efficient their in-
teractions between each other and with the environment,
while the photonic component provides a very light effective
mass (10‘5 of the electron mass), extended coherence, and
the possibility to optically excite polariton states with high
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efficiency. These properties, together with the bosonic be-
havior in the low-density limit,'* have recently allowed to
demonstrate polariton Bose condensation at low'> and high!'®
temperatures, as well as other interesting effects, including
superfluidity!'” and vortex formation.'8

The polarization or spin properties of the polaritons have
also been investigated thoroughly (see Ref. 13 for a review).
Here we will use some of these properties, notably that the
polaritons can have two spin projections on the growth axis
(+1 and —1) and are therefore described by two polarization
components. The polariton-polariton interaction is spin an-
isotropic: strongly repulsive for excitons with the same spin
projection on the growth axis and weakly attractive for exci-
tons with opposite projections.!®?® Under quasiresonant
pumping, a spinless polariton mode can be considered as a
nonlinear oscillator demonstrating bistable behavior.?!?? If
the polariton spin degree of freedom is taken into account, a
polariton state behaves as two coupled nonlinear oscillators,
showing multistable behavior.> On the other hand, another
polariton system, which behaves as two coupled nonlinear
oscillators as well, consists of two spatially separated polar-
iton states with Josephson coupling between them (but with-
out polarization). Such system has been recently considered
by Sarchi et al.?*

However, the two systems described above are not com-
plex enough in order to allow a chaotic behavior. The com-
plexity can be further increased by considering the polariton
Josephson junction taking into account the polarization de-
gree of freedom. This system of four coupled nonlinear po-
lariton oscillators has been recently analyzed,” showing a
rich phenomenology. The coupling between two spin com-
ponents without spatial separation provided by the natural
splitting of the ground state due to the anisotropy of the
cavities?® was called intrinsic Josephson effect because it
does not require any engineering of the spatial polariton con-
finement. In the nonlinear regime, the coupled macro-
occupied polariton modes have been predicted to exhibit
macroscopic quantum self-trapping leading to a spatial sepa-
ration of the spin components.’

In the present work we consider two traps with two po-
larization components in each trap with both extrinsic and
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intrinsic coupling mechanisms present. These couplings
bring in the complexity sufficient to observe chaotic behav-
ior. We first demonstrate the chaotic behavior of a single
system of two traps, analyze its properties, and then demon-
strate chaos synchronization of two such systems and its ap-
plication to chaotic communications. We also consider the
case of polarization-independent Josephson oscillations
which involve three spatially separated subsystems.

II. CHAOTIC JOSEPHSON OSCILLATIONS

We consider two potential traps of 3 um separated by a
potential barrier. Such a potential profile can be realized by
applying a stress on the microcavity surface’® or by pattern-
ing two micropillars?’ close to each other. In the single-mode
mean-field approximation one can write the equations for the
amplitudes of the polariton fields #;, (o is the polarization
component and j is the trap number).

5 o g o
ih =—]
ot T

+ a1|¢1,2:|2¢1,2: + a2|¢1,2:|2¢1,21

—Jin 1o = Wi oz + P ase™™, (1)

where ¢ =6bea,23/S is the polariton-polariton interaction
constant in the triplet configuration with x being the exciton
fraction of the polariton mode and S being the area of the
traps,’ a@,=-0.1q, is the polariton-polariton interaction in
the singlet configuration,?” J is the coupling strength between
two spatially separated modes (extrinsic Josephson cou-
pling), which can be tuned by adjusting the distance between
the pillars. W is the coupling strength between two circularly
polarized modes in the same trap (intrinsic Josephson cou-
pling), which, for instance, can be tuned by growing elliptic
pillars showing linearly polarized eigenmodes split in energy,
or applying directional stress. P;, is the pumping intensity of
the external laser, where only Py, is different from zero. fiw
is the laser detuning, or the energy difference between the
pumping energy of the laser and the energy of the bare po-
lariton mode A w, (without Josephson coupling and interac-
tions), which we take as the zero reference. Finally, 7/2 is
the polariton lifetime.

The single-mode approximation we use neglects the states
that are not occupied macroscopically and is valid until these
neglected states are stable against polariton scattering toward
them. In a two-dimensional system one has to check the
stability against parametric scattering toward a pair of states
of the continuum. In a confined system it is sufficient?® to
verify that the energy difference between the first excited
state and the ground state is much larger than the detuning of
the pump laser and than the blueshift. For a square trap we
consider, this energy difference can be estimated as
37h?/2mL*~6 meV (depending on the exciton-photon de-
tuning), which is much larger than the pump detuning values
used below. However, special attention should be paid in
experimental implementations to the depth of the wells and
to their size, in order to avoid the excitation of other modes.

In the calculations we use the parameters of a typical
cavity with GaAs quantum wells since such cavities pres-
ently show the longest lifetimes (we take 7=20 ps) and can
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FIG. 1. (a) Spin-up component from the first trap (the one which
is pumped) as a function of time; (b) Fourier transform of the
spin-up component showing chaotic spectrum capable of masking
useful signal at least up to 10'2 Hz; and (c) Poincaré cross section
of the phase space.

be easily patterned. This choice of material however implies
low-temperature operation. Future practical implementations
could be based on large band-gap semiconductors, such as
GaN, for which room-temperature polariton Bose Einstein
condensation has been reported.16 We take W=150 ueV, in
the range of values measured experimentally, and
J=90 weV. Both should be close to each other and to 7%/,
in order to observe the chaotic behavior.

The results of numeric simulations performed using the
system of Eq. (1) are shown in Fig. 1. Panel (a) shows the
time dependence of |i,,|? for a set of parameters providing
chaotic behavior. The great advantage of the polariton sys-
tem is that the light intensity emitted by the system is di-
rectly proportional to the polariton density and therefore
shows the same time dependence. Figure 1(b) shows the fre-
quency spectrum obtained from the Fourier transform of
.(t) and the Fig. 1(c) the Poincaré cross section (a cut of
the multidimensional phase space by an arbitrary chosen
plane). These two figures demonstrate typical signatures of
the chaotic behavior: a continuous Fourier spectrum with a
random peak structure and a fractal structure of the Poincaré
cross section correspondingly (for a closed trajectory, the
image would be a finite set of points).

A nonlinear system can be efficiently analyzed using the
conditional Lyapunov exponents, that is, the logarithms of
the eigenvalues \; of a function of the Jacobian matrix of the
system

lim[J*(7) - J(£) ]V

calculated along its trajectory (see Ref. 28 for review and
numerical method description).

The maximal Lyapunov exponent characterizes the rate of
separation in time of the trajectories which are initially in-
finitesimally close,
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FIG. 2. Phase diagram of the double-trap system with two po-
larizations. Solid lines mark the boundaries of the regions with
chaotic behavior.
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with ¥ (1)=VZ ., 5, o+ (8;,)*. Chaotic regime is thus
characterized by the presence of positive Lyapunov expo-
nents, which indicate the divergency of any small initial per-
turbation. Qualitatively, the chaotic regime is obtained when
the bistability transition of the mode pumped directly (i, in
our case) is constantly invoked by the changes of its popu-
lation due to the Josephson oscillations of both types.

To carry out quantitative analysis, we have performed
simulations at different pumpings P;, and detunings w
(which are the most easily variable parameters in experi-
ments since they are determined only by the external laser).
Figure 2 summarizes the results of these simulations show-
ing the phase diagram of the system in the detuning-pumping
intensity coordinates, the other parameters of the system be-
ing kept constant. The boundaries of the chaotic regions are
shown by black solid lines. One can see that almost for any
detuning under certain pumping the system should exhibit
chaotic oscillations. Outside the chaotic regions, the oscilla-
tions are periodic or absent, as already predicted for a sim-
pler system.?* Another strong specificity of this system is the
very low injected power?® which is required to achieve a
nonlinear and even chaotic behavior of the system. This is
due partly to the small size of the system considered, to the
long particle lifetime considered, but also to the intrinsic
properties of polaritons, namely, their capacity to be reso-
nantly excited because of their photonic component, and to
their strong nonlinear response due to their excitonic compo-
nent which brings a strong polariton-polariton interaction.

III. CHAOS SYNCHRONIZATION

Synchronization of chaotic systems is a necessary condi-
tion for the implementation of chaotic cryptography. Several
types of synchronization are possible. We use the so-called
Pecora-Carroll method.* We divide our system into two sub-
systems, one of them being intrinsically chaotic, and the
other intrinsically stable against small perturbations. These
two conditions are checked calculating the conditional
Lyapunov exponents along the trajectory in the chaotic re-
gime. This calculation shows that for the chosen parameters
(pumping 1 X 10'* s7!, detuning —1.5 meV, appearing to be
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optimal values) the system can be divided into two sub-
systems, one of them associated with the first trap, and the
other with the second trap. The Lyapunov exponents are
positive for the wave functions of the first subsystem and
negative for the wave functions of the second subsystem.
Therefore the synchronization between two systems should
be performed by connecting the output of the first trap of the
master system (both polarization components) with the only
trap of the slave system (with parameters corresponding to
the second trap of the master system), as shown by the blue
arrows (marked synchronization) in Fig. 3(a). We describe
this numerically by adding a term proportional to the wave
function of the driving system Vi, .(¢) to the equations de-
scribing the slave system 5. (').

. D
e _ 200
at’ T

- W= 2)

The coupling V represents the only source of pumping for
the slave system. A certain time delay, which should be taken
into account when decoding a useful signal, is present be-
tween the master and the slave systems.

ih +al|¢£:|2¢£:+a2|¢é:|2¢£:_v¢1:(t)

IV. CHAOTIC COMMUNICATION

To transmit information hidden in the chaotic oscillations
we introduce a communication channel to the system shown
by the red lines (marked communication) in Fig. 3(a). A
useful digital signal with a repetition rate of 50 GHz is added
to the output of the second polarization component of the
master system in point 1 and transmitted to the receiver 2,
where the useful signal is reconstructed by the comparison
with the output of the synchronized slave system. The corre-
sponding Fourier spectrum of the chaotic output with the
added useful signal is shown in Fig. 3(b), where the arrow
indicates the frequency position of the masked useful signal.
Obviously, the oscillations invisible in the Fourier spectrum
are completely masked in the time domain as well (not
shown). The signal s itself is shown in (d). The subtraction of
the chaotic output of the synchronized slave system from the
received signal from the master system allows recovering of
the transmitted signal [Fig. 3(e)].

Figure 3(c) shows the relative synchronization error be-
tween two corresponding wave-function components (|, |*
—| )1 (|5, )*+ |, *) from the driving and the slave sys-
tems with a mismatch of 0.5% of the coupling between po-
larizations within the same well W. Although there are sev-
eral peaks rising up, the synchronization is always recovered
on the long term, allowing a continuous signal transmission
for communication.

The chaotic oscillations for the given parameters allow
signal frequencies up to some THz for extremely well-
synchronized systems. But the recovering of the transmitted
signals is restricted by the frequency spectrum of the syn-
chronization error caused by the parameter mismatch of the
coupling constants and by the noise, which are always
present in experimental setups.

One of the most important aspects of a cryptographic sys-
tem is its security. A set of criteria for estimation of the
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FIG. 3. (Color online) Synchronization of the chaotic systems and chaotic communication: (a) schematic system with a separated
synchronization channel (blue) and a communication channel (red); (b) Fourier spectrum of the chaotic behavior of the second polarization
component of the master system modulated with a signal (red arrow); (c) synchronization error without signal versus time; (d) transmitted

signal s versus time, and (e) recovered signal s’.

security of chaotic cryptographic systems has been proposed
recently.® These criteria include, for example, resistance to
message signal extraction attacks: the useful signal should
not be visible in the Fourier spectra. Another criterion is the
robustness against noise in the communication channels. We
have checked that such criteria are well verified for our sys-
tem.

The experimental implementation of this polarization-
dependent communication scheme might seem challenging
due to technical restrictions, such as that the polarization is
not maintained during the transmission through an optical
fiber. Therefore, we have tested a similar system without the
polarization degree of freedom. However, to have sufficient
complexity, it is necessary to have at least three traps, with
two Josephson couplings between them. This can be ob-
tained by arranging the traps in a line and pumping the cen-
tral one. In this configuration one can observe chaotic oscil-
lations and their synchronization with the slave system
consisting of a single trap. However, since the coupling be-
tween the two circular polarizations within a trap is always
present because of the quantum-well anisotropy, this model,
although working, is not an adequate representation of the
real system. We therefore recommend the first scheme (two
traps, two polarizations) for realizing the chaotic communi-
cation systems.

Using separate synchronization and communication chan-
nels opens the possibility of bidirectional communication
while the synchronization is provided by a unidirectional
coupling of the master and slave system. Within such a

scheme, one can even implement chaotic communication
networks. A scheme of a chaotic communication network
contains a server (the master system), driving several slave
systems. Once all slave systems are synchronized with the
master, one can send and receive messages from one slave to
another. The knowledge of all “flight” times of the signal
between the slave systems is a necessary requirement to re-
construct the information.

V. CONCLUSIONS

In conclusion, we have studied chaotic Josephson oscilla-
tions between two macro-occupied polariton modes under
quasiresonant pumping, taking into account the polarization
degree of freedom. This unique system has the advantages to
directly deal with optical useful signal but simultaneously to
show very strong nonlinearities due to the polariton-polariton
interaction. As a result, it shows a chaotic behavior for very
low external pumping intensities with characteristic power
spectrum expanding in a very high-frequency range. Chaos
synchronization is possible for such systems, allowing the
transmission of useful signals with chaotic masking at rates
up to 50 Gb/s, which is an important advantage with respect
to other optical chaotic communication systems.
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